If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net
What is single-layer Graphene?
Single-layer Graphene is a two-dimensional honeycomb graphite made of one layer of carbon. The sp2 bond between carbon atoms makes it the world’s thinnest, but stiffest, material (the fracture resistance is approximately 200 times higher than steel). It is almost completely transparent and absorbs only 2.3% light. The thermal conductivity of this material is up to 5300 W/m. K is higher than diamond and carbon nanotubes; the resistivity only 0.96×10-6 O.cm is currently the world’s smallest resistance material. Graphene also has a high specific surface area (2630 m2/g) and is not doped. The graphene’s novel feature is that, in the absence doping, it is the Fermi levels located at the junction of the conduction band with the valence. The electron’s mass is zero at this point. This means that the carrier will appear as a Dirac. Fermions can have a carrier conductivity of up to 200,000 cm2/V. They also have a high current density. The graphene conductivity is still present even without carrier transmission. S=e2/h. Its Hall effect at room temperature expands its original temperature range ten-fold. This shows unique carrier characteristics as well as excellent electrical qualities. The unique electronic properties of graphene make it possible to confirm relativistic quantum-electrodynamic effects, which are hard to observe with particle physics.
Single-layer Graphene is a two-dimensional honeycomb graphite made of one layer of carbon. The sp2 bond between carbon atoms makes it the world’s thinnest, but stiffest, material (the fracture resistance is approximately 200 times higher than steel). It is almost completely transparent and absorbs only 2.3% light. The thermal conductivity of this material is up to 5300 W/m. K is higher than diamond and carbon nanotubes; the resistivity only 0.96×10-6 O.cm is currently the world’s smallest resistance material. Graphene also has a high specific surface area (2630 m2/g) and is not doped. The graphene’s novel feature is that, in the absence doping, it is the Fermi levels located at the junction of the conduction band with the valence. The electron’s mass is zero at this point. This means that the carrier will appear as a Dirac. Fermions can have a carrier conductivity of up to 200,000 cm2/V. They also have a high current density. The graphene conductivity is still present even without carrier transmission. S=e2/h. Its Hall effect at room temperature expands its original temperature range ten-fold. This shows unique carrier characteristics as well as excellent electrical qualities. The unique electronic properties of graphene make it possible to confirm relativistic quantum-electrodynamic effects, which are hard to observe with particle physics.
Single-layer graphene applications:
Graphene, the most suitable material for creating nanoelectronics devices. The devices made from it are smaller and consume less power. They also transmit electrons more quickly. Due to its high electron transfer speed and excellent characteristics of electron transmission (no scattering), it can be used to make transistors with high frequency (upto THz). The graphene is stable even with just one hexagonal circle at the nanometer-scale, and this is very important for developing molecular electronic devices. Single-electronic components prepared by electron beam printing and etching technology may break through the limits of traditional electronic technology, and have excellent application prospects in the fields of complementary metal-oxide-semiconductor (CMOS) technology, memory, and sensors, and are expected to be the development of ultra-high-speed computer chips. The medical industry will also benefit greatly from this breakthrough.
Single-layer films of graphene can be used as microscopic filters to decompose gasses. In medical research, a thin film of one atom in thickness can support molecules to be observed and analysed by electron microscopes. This will greatly help the medical community create new medical technologies. Graphene is able to detect gases with an external noise and accurately identify individual molecules. This could have applications in chemical probes and molecular sensors.
Single-layer graphene is widely used as a semiconductor electronic package due to its excellent properties in terms of electrical, mechanical, and thermal properties.
Tech Co., Ltd. () has over 12 years’ experience in research and development of chemical products. Contact us to send an inquiry if you are interested in high-quality Single-layer Graphene.
Graphene, the most suitable material for creating nanoelectronics devices. The devices made from it are smaller and consume less power. They also transmit electrons more quickly. Due to its high electron transfer speed and excellent characteristics of electron transmission (no scattering), it can be used to make transistors with high frequency (upto THz). The graphene is stable even with just one hexagonal circle at the nanometer-scale, and this is very important for developing molecular electronic devices. Single-electronic components prepared by electron beam printing and etching technology may break through the limits of traditional electronic technology, and have excellent application prospects in the fields of complementary metal-oxide-semiconductor (CMOS) technology, memory, and sensors, and are expected to be the development of ultra-high-speed computer chips. The medical industry will also benefit greatly from this breakthrough.
Single-layer films of graphene can be used as microscopic filters to decompose gasses. In medical research, a thin film of one atom in thickness can support molecules to be observed and analysed by electron microscopes. This will greatly help the medical community create new medical technologies. Graphene is able to detect gases with an external noise and accurately identify individual molecules. This could have applications in chemical probes and molecular sensors.
Single-layer graphene is widely used as a semiconductor electronic package due to its excellent properties in terms of electrical, mechanical, and thermal properties.
Tech Co., Ltd. () has over 12 years’ experience in research and development of chemical products. Contact us to send an inquiry if you are interested in high-quality Single-layer Graphene.